AllChem Logo

english















Общие сведения

Требования к хладагентам. Прежде чем рассматривать свойства хладагентов, остановимся на основных требованиях, предъявляемых к ним. Требования к хладагентам подразделяются на следующие группы:

  • экологические - озонобезопасность, низкий потенциал глобального потепления, негорючесть и нетоксичность;
  • термодинамические - большая объемная холодопроизводитель-ность; низкая температура кипения при атмосферном давлении; невысокое давление конденсации; хорошая теплопроводность; малые плотность и вязкость хладагента, обеспечивающие сокращение гидравлических потерь на трение и местные сопротивления при его транспортировке; максимальная приближенность к заменяемым хладагентам (для альтернативных озонобезопасных хладагентов) по давлениям, температурам, удельной объемной хо-лодопроизводительности и холодильному коэффициенту;
  • эксплуатационные - термохимическая стабильность, химическая совместимость с материалами и холодильными маслами, достаточная взаимная растворимость с маслом для обеспечения его циркуляции, технологичность применения; негорючесть и не-взрывоопасность; способность растворять воду, незначительная текучесть; наличие запаха, цвет и т. д.;
  • экономические - наличие товарного производства, доступные (низкие) цены.

Хладагенты, отвечающие перечисленным требованиям, найти практически невозможно, поэтому в каждом отдельном случае выбирают хладагент с учетом конкретных условий работы холодильной машины, и предпочтение следует отдавать таким, которые удовлетворяют принципиальным и определяющим требованиям.

Альтернативными веществами могут быть чистые (простые) вещества и смеси. Предпочтение отдается прежде всего чистым веществам.

Особенности термодинамики смесей хладагентов. В молекулярной теории растворов различают зеотропные (неазеотропные) и азеотропные смеси.

Термодинамическое поведение смеси азеотропного состава подобно поведению чистого вещества, поскольку состав паровой и жидкой фаз у нее одинаков, а давления в точках росы и кипения совпадают.

Концентрации паровой и жидкой фаз зеотропной смеси в условиях термодинамического равновесия различаются, а изотерма под бинодалью в p--h-координатах имеет наклон, т.е. кипение при постоянном давлении происходит при увеличении температуры хладагента от t01 до t02, а конденсация - при падении температуры от tК1 до tК2 (см. диаграмму ниже). Это необходимо учитывать при определении степени перегрева пара на входе в компрессор, а также при оценке энергетических характеристик холодильной установки.

Таким образом, температуру кипения и температуру конденсации следует находить по-другому. Температуру кипения вычисляют как среднюю температуру t0 между температурой точки росы t02 при постоянном давлении всасывания рВС и температурой, при которой хладагент поступает в испаритель t01.

Диаграмма lg p-h для зеотропных хладагентов

Температуру конденсации определяют как среднюю температуру tк.ср между температурой точки росы tк1 (температура начала процесса конденсации при постоянном давлении нагнетания pH) и температурой tк2 жидкости на выходе из конденсатора. Разность температур фазового перехода при постоянном давлении (при кипении или конденсации) получила название Dtgl или температурный глайд (от англ, glide - скольжение). Значение Dtgl зависит от состава рабочего тела и является важным технологическим параметром.

Перегрев всасываемого пара вычисляют как разность температуры tBC на входе в компрессор и температуры точки росы t02 хладагента при давлении всасывания рвс. При регулировании холодопроизводительности холодильных установок с помощью регулирующих вентилей все изложенное выше необходимо учитывать.

Переохлаждение жидкости вычисляют как разность между действительной температурой жидкости и температурой точки конца конденсации tк2 при давлении нагнетания рн.

Особенно важно при регулировании давления учитывать температурный глайд смеси хладагентов, например хладагентов 407С, R410A и др. Кроме того, температурный глайд - решающий фактор при определении размеров теплообменных аппаратов.

Потери давления в системе существенно увеличивают температурный глайд. Пренебрежение данным явлением при составлении теплового баланса может привести к занижению размеров теплообменных аппаратов и других элементов холодильной системы. Влияние этого фактора особенно существенно, когда холодильная система эксплуатируется на пределе своих возможностей.

Таким образом, зеотропные смеси имеют свои преимущества и недостатки. С одной стороны, изменение состава рабочего тела при циркуляции его по контуру холодильной системы может привести к возрастанию холодопроизводительности и холодильного коэффициента по сравнению с этими характеристиками для чистых хладагентов. С другой стороны, применение зеотропных смесей приводит к снижению интенсивности теплообмена в испарителе и конденсаторе.

Еще один недостаток зеотропной смеси - потенциальная возможность изменения ее состава при появлении утечек в контуре холодильной системы, что влияет на пожаробезопасность и холо-допроизводительность установки. Чтобы снизить вероятность изменения состава в области концентраций, где преобладает пожароопасный компонент, в смесь добавляют негорючий компонент, давление насыщенных паров которого близко к давлению паров пожароопасного компонента или выше него. Если смесь содержит хотя бы один горючий компонент, то необходимо при заправке избегать попадания воздуха в систему.

Основные механизмы изменения состава многокомпонентного хладагента в холодильной установке следующие:

  • парожидкостное разделение зеотропных смесей в компрессоре и теплообменных аппаратах;
  • различная растворимость компонентов смеси в холодильном масле;
  • селективная потеря какого-либо компонента из-за утечки компонента вследствие негерметичности системы; изменения массы многокомпонентного рабочего тела в отдельных элементах холодильной системы при различных тепловых нагрузках.

При практическом использовании зеотропных смесей рекомендуется:

  • заправлять холодильную систему из баллона, заполненного жидким хладагентом;
  • смеси с отчетливо выраженным температурным "глайдом" не следует рекомендовать для применения в холодильных установках с затопленным испарителем;
  • учитывать неодинаковую растворимость каждого компонента смесевого хладагента в холодильных маслах;
  • при расчете характеристик холодильной машины следует принимать во внимание изменение состава многокомпонентного хладагента.

Обозначения хладагентов. В России внедрен международный стандарт ИСО-817 "Органические хладагенты", согласно которому предусмотрены цифровые обозначения хладагентов в технической документации на хладагенты и масла.

Стандартом допускается несколько обозначений хладагентов: условное (символическое), торговое (марка), химическое и химическая формула. Обозначения основных хладагентов даны в приложении 19.

Условное обозначение хладагентов является предпочтительным и состоит из буквы "R" или слова Refrigerant (хладагент) и комбинации цифр. Например, хладон-12 имеет обозначение R12 (CF2C12). Цифры расшифровывают в зависимости от химической формулы хладагента. Первая цифра (1) указывает на метановый ряд, следующая цифра (2) соответствует числу атомов фтора в соединении. В том случае, когда в производных метана водород вытеснен не полностью, к первой цифре добавляют количество оставшихся в соединении атомов водорода, например R22.

хладагенты

Для этанового ряда вначале записывают комбинацию цифр - индекс, равный 11, для пропанового - 21, для бутанового - 31. Для этих производных ко второй цифре добавляют число атомов водорода, если они есть, например трифтортрихлорэтан C2F2C13 - R113.

В случае, если в составе соединения имеется бром, в его обозначении появляется буква "В", за которой следует число атомов брома, например R13B1 - трифторбромметан, химическая формула CF3Br.

Изомеры производных этана имеют одну и ту же комбинацию цифр (цифровой индекс), и то, что данный изомер является полностью симметричным, отражается его цифровым индексом без каких-либо уточнений. По мере возрастания значительной асимметрии к цифровому индексу соответствующего изомера добавляют букву "а", при большей асимметрии ее заменяют буквой "b", затем "с", например R134a, R142b и т. д.

Способ цифрового обозначения непредельных углеводородов и их галогенопроизводных аналогичен рассмотренному выше, но к цифрам, расположенным после буквы "R", слева добавляют 1 для обозначения тысяч (например, R1150).

Для хладагентов на основе циклических углеводородов и их производных после буквы "R" перед цифровым индексом вставляют букву "С" (например, RC270).

Хладагенты неорганического происхождения имеют номера, соответствующие их относительной молекулярной массе, плюс 700. Например, аммиак, химическая формула которого NH3, обозначают как R717, воду (Н2О) - как R718.

Хладагентам органического происхождения присвоена серия 600, а номер каждого хладагента внутри этой серии назначают произвольно (например, метиламин имеет номер 30, следовательно, его обозначение запишется как R630).

Зеотропным, или неазеотропным, смесям присвоена серия 400 с произвольным номером для каждого хладагента внутри этой серии, например R401A.

Хладагенты на основе предельных углеводородов, содержащих бром, имеют двойное обозначение. Это обозначение имеет в своем составе букву "В", например R13B1, или букву "Н", за которой следуют цифры 1 и 3, но далее к ним добавляют еще две цифры, первая из которых указывает на число атомов хлора, вторая - на число атомов брома. Например, трифторбромметан (CF3Br), у которого число атомов хлора равно 0, а атомов брома - 1, может обозначаться либо R13B1, либо Н1301.

В настоящее время появилась тенденция при обозначении хладагентов предварять цифровой индекс не буквой "R" или "Н", а аббревиатурой, указывающей непосредственно на группу, к которой относят хладагент в зависимости от степени воздействия его на окружающую среду. Например, предлагаются обозначения:

  • CFC12 для хладагента R12, принадлежащего к группе CFC (ХФУ), в которую входят хладагенты, вредные для окружающей среды;
  • HCFC125 для хладагента R125, относящегося к группе HCFC (ГХФУ), состоящей из хладагентов, менее вредных для окружающей среды;
  • HFC134a для хладагента R134a, входящего в группу HFC (ГФУ), состоящую из хладагентов, безвредных для окружающей среды.

Каждая фирма - производитель хладагентов выпускает в продажу свою продукцию под собственным наименованием, например такой деятельностью занимаются такие фирмы/торговая марка как:

"MackDown Chemical Inc" / MackFri®,
"Du Pont de Nemour" / Фреон (Freon) или Сува (SUVA®),
"Elf Atochem" / Форан (FORANE®),
"Solvay" / Кальтрон (Kaltron),
"Montedison" / Альгофрен (Algofrene),
AZSO / Allied Signal,
ICI / Клеа (Klea),
"Daikin Kogyo" / Дайфлон (Daiflon).

Поэтому, например, R407C может поступать на рынок под марками MackFri®-07c, FORANE® 407C, SUVA® 9000 и т. д.